

# Making System z the Center of Enterprise Computing

Mark Neft Accenture

August 5 at 3:00 pm in room 305 Sessions # 7167





### **Presentation Abstract:**

- How to exploit the best aspects of z/OS and Enterprise Virtualization to create a cost effective and highly reliable application Eco System. The presentation will use real examples of combining z/OS and Linux on System z to create a cost effective and highly reliable enterprise solution. This includes leveraging DB2 with zIIP engines, and Java, COBOL and Oracle RAC all running on Linux on System z, to create a simplified and scalable solutions. I will also highlight some of the cost savings models illustrating how this solution reduced Oracle software cost by over 80% and mainframe costs by 30% or more.
- Learn how to enable z/OS workload to run on Linux for System z
- Review case studies of Oracle and COBOL application running on System z



### **Objectives**

- Review the value proposition of the System z in enterprise computing
  - What is Mainframe Optimization
  - What are the options on the mainframe
    - Uber- virtualization
    - Oracle super scaling
    - Enabling COBOL z/OS workload to run on Linux for System z
  - The mainframe is not dead and neither is COBOL





### Mainframe Optimization (MFO)

- MFO is an approach that positions the best of z/OS to enable Linux on System z
- Why is it important today?
  - Typically the Mainframe is the single largest line-item on an IT budget
  - IT budgets are getting reduced by 10% 50%
  - The mainframe is the logical place to start
- How to reduce costs by 20%-80% without leaving the mainframe

## There are five key aspects to Mainframe Optimization:



- 1. Understanding your baseline costs
- 2. Server Consolidation "Uber-virtualization" of distributed platform to System z / Linux
- Oracle Consolidation Consolidate multiply Oracle instances onto a smaller foot print and reduce the number or Oracle licenses
- Partial Migration z/OS based applications to Linux on System z



## **Mainframe Optimization**



### Prioritizing the work and measuring the benefits during the journey

- Accommodate changes in business imperatives
- Proactively understand the affects of the different levers within portfolio
- Measure and monitor the progress focus on the quantifiable results



**SHARE** in Bostor

#### Brand 3 1.1 Channel Brokers/Dealers Affinity: Groups Integratio Methods 1.4 Marketing ustomer Experien Management Marketing Mix 4 Optimization Enterprise Marke Management 2.1 Cross Capability Data Capture Treaty Coinsurance Manade Solution Lifecv 2.2 Cross Product 2.2.1 Product Developmen 2.2.2 Underwriting & Pricing 2.2.3 Policy Servicing 2.2.4 Claim iled Activity/Renct/Support Core F Supply Chain/Vendor Manager 3.6 Legal, Compliance an Reporting 3.1 Strategic Planning 3.2 Audi 3.4 Treasury 3.5 Finance 3.3 Information Technolog 3.7 Human Resourc 3.81 earn 3.10 Risk Managemen 3.11 Facilities Manad

#### Show the progress using a business view

Business focus view showing the results keeps IT aligned with the changing business imperatives

Illustrative Key of Complexity: Orange = High Blue = Normal

Yellow = Medium Others = not in scope



6

## Server consolidation - Running the organization in a box



- Levering the tried and true LPAR technologies enables organization to exploit cost effective, scalable, and stable Open Source deployment
  - The ability to co-locate tightly coupled solutions
  - The ability to optimize hardware during functional consolidation
  - The ability to prioritize (share) hardware to meet business needs now (Dev/Test/Prod)

| Development               | Development<br>Support     | System<br>Integration  | User<br>Acceptance   | Production      |
|---------------------------|----------------------------|------------------------|----------------------|-----------------|
| Development<br>App -01    | SCM –                      | System Test<br>App -01 | UAT Test<br>App -01  | Prod<br>App -01 |
| Development<br>App -02    | Build Server               | System Test<br>App -02 | UAT Test<br>App -02  | Prod<br>App -02 |
|                           | Document<br>Repository     |                        |                      |                 |
| Development<br>App -nn    | Requirements<br>Repository | System Test<br>App -nn | TUAT Test<br>App -nn | prod<br>App -nn |
| Sandbox                   | Test Scripts               | System Test<br>DB-01   | UAT Test<br>DB-01    | prod<br>DB-02   |
| Misc                      | Development<br>Database(s) | System Test<br>DB-02   | UAT Test<br>DB-02    | Prod<br>DB-02   |
| Virtual hardware platform |                            |                        |                      |                 |
| SAN / NAS                 |                            |                        |                      |                 |



### Value Proposition: Oracle Consolidation

Global Company

- Achieve super scalability on a small footprint
- Oracle software costs reduced by 85%\*
- Physical footprint reduced by 80% (3 Racks vs. 15 racks)\*\*
- Background
  - 2 Node OracleRac Cluster
  - >36TB
  - Single tables of 3+ Billion rows
  - Full primary and foreign keys
  - Indexes
  - Referential Integrity turned on

### Results Achieved

- Over 7 hours the application averaged >240,000 TPS
- Multi-row inserts / updates
- CPU utilization was ~50% on the Oracle server
- Application is Java running on the IFL as well

\* Oracle would have required 224 Intel processors to support the same load or 4 node Superdome plus equivalent hardware for just production DR

\*\* excluding Disk



### Oracle

- Achieve Super Scalability on a Small Footprint





### **Value Proposition: Application Migration**

### **Small Application Migration**

A small application currently costing \$1.5M/year to operate becomes \$0.1M or a five year savings of over \$6M (Including the cost of migration)



z/OS \$XX/CPU Hour vs IFL \$Y.Y/YCPU Hour

### SHARE in Boston

#### **Partial Application Migration\***

Moving a portion of a 5,000 MIP application to an IFL allows a cost reduction of \$40-55M and a cost avoidance savings of \$70-\$90M

\* Patent Pending



Illustrative cost comparisons: Example 2: z/OS engine \$ XXX vs. IFL engine XXX / 90 Comparable Intel server required 5-10 more or 2-3x

## Mainframe Application Configuration Typical





















SHARE Technology - Congestions - Peruits





Mainframe

z/OS

Let z/OS enable Linux on System z to be a safe place for Mission Critical Enterprise Applications

DB/2 sysplex

zIIP





## **Summary of CICS Workload Migration**

- Trans ABC & EFG response time increased from .4s to 12s
- CPU utilization on CECA remained consistent
  - XYPA and XYPC decreased (This is good)
  - XYOA and XYUA increased (out of scope workload)
- CPU Utilization on CECB remained consistent due to growth in XYOB and XYUB (out of scope workload)
- CPU Utilization decreased for both CICSONE and BATCHONE work
  - XYPA saw largest decrease (savings of 1 engine) ~ 760 MIPS
  - XYPC saw decrease (saving of .5 engines) ~ 380 MIPS
  - 1705 QAZ jobs ran on 3/17 3525 QAZ jobs ran on 6/3
- CPU Utilization for MQ increased 5-7% on all 4 lpars
- CPU Utilization for DDFPTS increased transactions doubled
- IFL utilization increased from 15% to 60% (This is good)
- ZIIP utilization increased (10% 20%) (This is a good)
- Coupling Facility Utilization remained consistent
  - Requests to QSP0PTSQUEUES1 decreased by 87%







## **Summary of CICS Workload Migration**

- Trans ABC & EFG response time increased from .4s to 12s
- CPU utilization on CECA remained consistent
  - XYPA and XYPC decreased (This is good)
  - XYOA and XYUA increased (out of scope workload)
- CPU Utilization on CECB remained consistent due to growth in XYOB and XYUB (out of scope workload)
- CPU Utilization decreased for both CICSONE and BATCHONE work
  - XYPA saw largest decrease (savings of 1 engine) ~ 760 MIPS
  - XYPC saw decrease (saving of .5 engines) ~ 380 MIPS
  - 1705 QAZ jobs ran on 3/17 3525 QAZ jobs ran on 6/3
- CPU Utilization for MQ increased 5-7% on all 4 lpars
- CPU Utilization for DDFPTS increased transactions doubled
- IFL utilization increased from 15% to 60% (This is good)
- ZIIP utilization increased (10% 20%) (This is a good)
- Coupling Facility Utilization remained consistent
  - Requests to QSP0PTSQUEUES1 decreased by 87%





### Summary - Uber - Virtualization on a Small Footprint

- Leverage existing floor space
- Dynamic load balancing
- Development and test can share the same hardware
- No physical network equipment required to connect internal servers
- Internal servers can remain on separate virtual LANS
- Simplified and reduce cost for DR



Copyright © 2010 Accenture All Rights Reserved.



### Things to watch out for

- Having just senior leadership sponsership is not good enough
- Agree on what the objectives are
  - Reduce COST vs GP MIPS vs TOTAL MIPS vs etc...
- Pick something simple to pilot first
- Understand the current production workload and don't get roped into supporting things that don't happen today
- Other things to consider
  - Change the code on z/OS and validate the same code works in both places
  - Start setting up the operations early
  - Don't be surprised during testing that you find things that really don't work in production today



## Uber-virtulization everything that works together under one umbrella



withdrawal without notice, and represents goals and objectives only.



### **Contact Information**

- Mark.Neft@Accenture.com
- Phone: +1 (973)301 -3278

